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Abstract
A uniform asymptotic approximation of the 3D scattering wavefunction for a
central potential is obtained by using a new Ansatz on the form of a solution.
This Ansatz employs the regular reduced radial wavefunction of zero orbital
angular momentum, generated by the problem itself, rather than a standard
special function. The uniform asymptotic approximation of the 3D scattering
wavefunction allows finding of the scattering amplitude without using the
partial wave expansion. The method is applied to the scattering by a pure
Coulomb potential. In contrast to the uniform asymptotic approximation of
the 3D Coulomb wavefunction, based on the Airy function that breaks down
at the caustic ξ = 0, the uniform asymptotic approximation obtained in this
paper is valid over the whole range of the variables. It is shown that the uniform
asymptotic approximation of the 3D Coulomb scattering wavefunction obtained
through the new Ansatz is the same expression as that of the Gordon solution
written in the form obtained by the present authors of a previous paper.

PACS numbers: 34.10.+x, 34.50.−s, 34.80.Bm

1. Introduction

The knowledge in physics of molecules, atoms and nuclei can be obtained by the study of
quantum collision processes. In order to solve the scattering problem for a central potential,
the most frequently used method is the partial wave expansion of the solution [1–3]. However,
it is well known that even for problems that have been solved, unfortunately this solution is too
complicated to be used in practical applications. Moreover, the partial wave expansion does not
emphasize the functional dependence of the wavefunction nor the scattering amplitude on the
potential parameters, which is necessary if one desires to analyze the formula in order to obtain
a description of what is happening during the collision. Because of this, considerable effort
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has been devoted to the study of approximate solution methods. The method of the Wentzel–
Kramers–Brillouin (WKB) approximation is applied in almost all branches of physics, from
tides and earthquakes, optics to ionospheric theory and quantum mechanics.

The 3D WKB approximation is the main approximation used in the study of the scattering
processes. This is a non-uniform asymptotic approximation, obtained by taking a small
parameter: the Planck constant h̄ [4].

The advantage of the 3D WKB approximation is its high precision. The main merit of
the 3D WKB approximation is that it is a ‘doubly asymptotic expansion’ [5, 6]. This is an
approximation that has asymptotic character not only for small h̄, but also with respect to
large |�r|. The remainder of this approximation is small both for small h̄ and large |�r|. The
knowledge of this doubly asymptotic approximation is extremely helpful. This allows us to
describe the solutions in a unique fashion and to select the scattering solution that satisfies the
radiation condition at infinity.

The main shortcoming of the WKB approximation is that it becomes infinite on certain
surfaces, called caustics. Caustics are the higher dimensional analog for partial differential
equations of the turning points of the WKB theory for ordinary differential equations. The
problem of caustic fields is topical in the scattering of light and particles (e.g. rainbow
phenomena in optics, in atomic and nuclear physics), in the wave propagation (e.g. radio
and microwave antenna, problems of eigenmodes and waves in cavities and waveguides), etc.
Caustics as physical objects have been analyzed by Kravtsov [7].

In order to overcome the above-mentioned shortcoming of the WKB approximation, a
different approximation that is uniformly valid in a region containing one or more caustics
is necessary. The asymptotic representation of the solution is greatly simplified if one
uses a uniform asymptotic approximation. The Stokes phenomenon is obviated, and the
solution is represented by a single form over the entire range of variables [5, 6]. Thus, a
uniform asymptotic approximation provides a smooth transition across a caustic. Kravtsov
[8] and Ludwig [9] derived the uniform asymptotic approximation of the solution in a region
containing the simplest caustics. They have represented the solution of the problem in terms
of the solution of a ‘related’ or ‘comparison’ equation, by a method introduced and developed
by Langer [10]. The method of the ‘comparison’ equation has been discussed in detail by
Olver [11]. Applications of the comparison equation method to the wave theory are given in
[12].

In the case of the smooth convex caustic, the Airy function equation has been taken
as a comparison equation [8, 9]. In other terms, the solution has been represented as a
linear combination of the Airy function and its derivative. In the vicinity of the caustics, the
wavefunction has a smooth transition between oscillatory and exponentially damped behavior,
with large values on the caustic itself. The term of the solution which involves the derivative
of the Airy function is relatively small near the caustics, but prominent away from caustics.
This term makes the uniform expansion possible [9, 13]. Away from the caustic, the solution
reduces to the 3D WKB approximation.

The uniform asymptotic approximations have been used in a large variety of problems,
each problem imposing the type of special functions to be employed. The generalized Bessel
and Hankel functions, Airy function, Weber functions, Fresnel integral functions have been
used by Ludwig [14], Lewis, Bleinstein and Ludwig [15], Matkowsky [16], Kravtsov [17],
Lewis and Boersma [18], Smith [19], Zauderer[20], Shen and Keller [21], Shen [22], Keller and
Ahluwalia [23] in order to give the asymptotic solution for phenomena such as the scattering
by a general convex obstacle, creeping waves, gallery modes, edge diffraction, trapped waves,
surface waves on fluid, wave propagation in a rotating ocean. More references to the uniform
asymptotic approximation can be found in the books [13, 24–26].
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While specific problems have been solved by the uniform asymptotic approximation
method, a general theory for the 3D scattering problem has not been given, in contrast to the
1D case where there is the theory for the turning points problem [5, 6]. There is no general
method to determine the appropriate uniform expansion for any given problem. Catastrophe
theory [13] paved the way for a general theory of uniform asymptotics based on standard
integrals. However, there is no general method for determining the appropriate ‘Ansatz’ about
the form of the solution a priori. The method of the uniform asymptotic approximation has
some characteristic difficulties [27]. An accurate guess (‘Ansatz’) for the form of the solution
is necessary, otherwise singularities will occur in some undetermined coefficients. Another
difficulty of the uniform asymptotic approximation is that the labor involved increases sharply
as the complexity of the problem increases [27].

The success of the uniform asymptotic expansions is connected with the principle of
parsimony formulated by Ludwig [28]: it is important not to take too many terms in
the expansion (usually not more than one term), and it is important not to include more
complications in the asymptotics than are absolutely necessary. This parsimony principle
makes the method of the uniform asymptotic expansion easy to apply and makes it insensitive
to the fine features of the structure under consideration.

In the present work, a uniform asymptotic expansion with one term of the 3D wavefunction
describing the scattering process of a spinless particle by a central potential is obtained. In the
study of the scattering process, the uniform asymptotic approximation of the wavefunction is
very important because its asymptotic at r → ∞ allows us to obtain the explicit expression
of the scattering amplitude, emphasizing the dependence on the potential parameters. This
paper is based on a new Ansatz. Instead of using the standard special functions (Airy,
Bessel, Weber, etc) as solutions of the comparison equation, a function generated by the
problem itself is used. The special function used in this work is the regular reduced radial
wavefunction of zero orbital angular momentum. The uniform asymptotic approximation
of the 3D scattering wavefunction allows finding the scattering amplitude without using the
partial waves expansion. In this way, the convergence difficulties related to the scattering
amplitude expansion in Legendre polynomials are obviated [29]. The method is applied to a
pure Coulomb potential. The more general case of a short-range plus Coulomb potential will
be presented in a separate paper. In [30], a uniform asymptotic approximation of the Coulomb
wavefunction based on the Airy function was given. This approximation is valid in the region
of the caustic ξ = 4η/k, but fails at the caustic ξ = 0, where ξ = r(1 − cos θ) is a parabolic
coordinate. In contrast, the uniform asymptotic approximation obtained in this paper is valid
over the whole range of the variables, including the caustic ξ = 0.

This paper is organized as follows. In section 2, a uniform asymptotic approximation
for the 3D scattering wavefunction by a central potential is deduced by using a new Ansatz.
The special function of the approximation is the regular reduced radial wavefunction of zero
angular momentum. In section 3, the 3D uniform asymptotic approximation of the Coulomb
scattering wavefunction is obtained. The 3D WKB asymptotic approximation is deduced for
the Coulomb potential in order to identify and analyze the caustics of this problem. This
allows us to choose the appropriate comparison equation in order to obtain the 3D uniform
asymptotic approximation, according to the criteria to be fulfilled by the comparison equation
method presented in appendix A. The uniform asymptotic approximation of the 3D Coulomb
scattering wavefunction is obtained by using the new Ansatz on the form of a solution. The
uniform asymptotic approximate wavefunction is in fact the exact Gordon solution expressed
in the form obtained by Grama, Grama and Zamfirescu in a previous paper [30]. This
demonstrates the accuracy of the guess (Ansatz) of the solution.
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2. Uniform asymptotic approximation of the 3D scattering wavefunction for a central
potential. New Ansatz

We consider the scattering of a spinless particle by a potential U(�r) that decreases at infinity.
The wavefunction � that describes the scattering process satisfies the Schrödinger equation

�� + (k2 − V (�r))� = 0, (1)

with k2 = 2m

h̄2 E, V (�r) = 2m

h̄2 U(�r). � is a regular function in R3 and

� = plane wave + φ(r), (2)

where φ(r) satisfies the radiation condition at infinity. If V (�r) is a short-range potential, i.e.
limr→∞ V (�r) ∼ O(r−ε) , ε > 2, then the radiation condition is [31]

lim
r→∞(∂φ/∂r − ikφ) = 0. (3)

If V (�r) is a long-range potential, i.e. limr→∞ V (�r) ∼ O(r−ε), ε < 2, then the radiation
condition is ‘non-spherical’ [32, 33],

lim
r→∞(∇φ − ik∇Sφ) = 0, (4)

where S satisfies the eikonal equation

(∇S)2 = 1 − V (�r)
k2

. (5)

We shall find the asymptotic solution of (1) for small Plank constant h̄. Instead of working in
(1) with small h̄ a large parameter λ is introduced. In other words, the asymptotic solution for
large λ of the following equation will be obtained:

�� + λ2(k2 − V (�r))� = 0. (6)

In the final expression of the wavefunction, the parameter λ will be put λ = 1 . Let us consider
the 3D WKB approximation of the solution for the scattering by a central potential V (r). In
order to obtain the 3D WKB approximation for �, we look for a solution of (6) for large λ of
the form [4, 34]

� = A(�r) eiλS(�r). (7)

Substituting (7) into (6) and by grouping the like-power terms, the following equations are
obtained:

(∇S)2 = k2 − V (r) eikonal equation, (8)

2∇A∇S + A�S = 0 transport equation. (9)

By solving (8) and (9) the eikonal S(�r) and the amplitude A(�r) are obtained, i.e. the 3D WKB
approximation is obtained.

Our problem is to determine a uniform asymptotic approximation of the 3D solution of
the Schrödinger equation which describes the scattering by a central potential V (r). Taking
into account the characteristic difficulties of a uniform asymptotic approximation mentioned
in section 1, we introduce a new initial guess (‘new Ansatz’). We start from the idea that the
special function used in the form of a solution must be generated by the problem itself, rather
than using standard special functions (Airy, Bessel, Weber, etc). Let us consider the partial
waves expansion of the wavefunction �(�r) which describes the scattering

�(�r) =
∞∑
l=0

Cl

Rl(r)

r
Pl(cos θ), (10)
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where Rl(r) are the regular reduced radial wavefunctions and Pl(cos θ) are the Legendre
polynomials. Let us take the WKB approximation of both parts of (10). Then the singularities
of the WKB approximations of the regular reduced radial wavefunctions at the turning
points and the singularities must be somehow reflected in the singularities of the 3D WKB
approximation of �(�r) at caustics. This leads us to the new Ansatz, namely we take as the
special function which occurs in the uniform approximation of the solution �(�r) the regular
reduced radial wave function of zero orbital angular momentum R0(r). In other words, we
take the form

�(�r) = eiλω(�r)
{
g(�r)R0(ρ(�r)) − i

λ
h(�r)R′

0(ρ(�r))
}

. (11)

Here, R0 is the regular solution of the second-order ordinary differential equation

d2R0

dρ2
+ λ2P(ρ)R0 = 0, (12)

where

P(ρ) = 1 − 1

k2
V (ρ/k). (13)

In order to obtain the uniform asymptotic approximation, the functions ω(�r), ρ(�r), g(�r), and
h(�r) have to be determined.

In appendix B, it is shown that the functions ω(�r), ρ(�r), g(�r) and h(�r) can be expressed
in terms of new functions S±, A± in the following way:

ω = 1

2
(S+ + S−), (14)∫ ρ

P 1/2(t) dt = 1

2
(S+ − S−), (15)

g = 1

2
P 1/4(A+ + A−), (16)

h = 1

2
P −1/4(A+ − A−), (17)

whereS± andA± satisfy the generalized eikonal equations and generalized transport equations,
respectively,

(∇S±)2 = k2 − V (r), (18)

2∇S±∇A± + A±�S± = 0. (19)

In order to find the uniform asymptotic approximation of the scattering solution of the
Schrödinger equation (1) for a central potential V(r) using the new Ansatz, the generalized
eikonal and transport equations (18) and (19) have to be solved, then their solutions S±, A±
used to determine the functions ω(�r), ρ(�r), g(�r) and h(�r), according to (14)–(17). With the
functions ω(�r), ρ(�r), g(�r) and h(�r) the uniform asymptotic approximation of the solution of
(1) is constructed in the form given by (11). The new Ansatz (11) uses the regular reduced radial
wavefunction of zero orbital angular momentum R0 and its derivative, rather than standard
special functions. In this way, the pattern of the caustics of the 3D WKB approximation is the
same as the pattern of the caustics of the regular radial wavefunctions. Indeed, the signature of
the caustics of the radial wave equation (turning points and singularities) is preserved by the
caustics of the 3D problem because the comparison function R0(ρ(�r)) satisfies the zero angular
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radial equation written in the variable ρ(�r). Moreover, the new Ansatz ensures the correct
behavior at infinity, i.e. the wavefunction satisfies the radiation condition at infinity. The
uniform asymptotic approximation must be multiplied by a constant that is determined from
the condition to have an incident wave of unit amplitude. The uniform asymptotic approach
obviates the shortcomings of the partial wave expansion that consist in the impossibility to
bring into prominence the dependence of the wavefunction on the potential parameters and
the poor convergence of the expansion for large k. Instead of the series of the partial wave
expansion, a closed-form expression for the wavefunction is obtained. The asymptotics at
r → ∞ of the uniform asymptotic approximation of the scattering wavefunction leads to the
explicit expression of the scattering amplitude, emphasizing the dependence on the potential
parameters.

3. Uniform asymptotic approximation for the 3D Coulomb scattering wavefunction
based on a new Ansatz

In the following, we will obtain the uniform asymptotic approximation of the 3D scattering
wavefunction in the case of the pure Coulomb potential acting between two charged particles
using the new Ansatz. First, we will obtain the 3D WKB asymptotic approximation. This
approximation has been given in [35] by using parabolic coordinates; see also [36–38].
However, in order to make the paper self-consistent we will give a short deduction of the
approximation. This 3D WKB approximation is necessary in order to identify and analyze
the caustics of the problem. This allows us to choose an appropriate comparison equation
(see appendix A). The analysis of the caustics characteristics shows that the new introduced
Ansatz is suited for the present problem. Moreover, in order to find the uniform asymptotic
approximation, the solutions of the eikonal and transport equations that occur in obtaining the
3D WKB approximation are needed.

We start with the eikonal equation for the Coulomb potential V (r) = 2c/r , where c = ηk.
Here η = Z1Z2e

2m/h̄2k is the Sommerfeld parameter:

(∇S)2 = k2 − 2c

r
. (20)

For c = 0 the solutions of this equation are kz and kr that correspond to a plane wave and an
outgoing wave, respectively. For c �= 0 we look for a solution of the form

S = k(r + W). (21)

By introducing S given by (21) in (20) the following equation for W is obtained:

(∇W)2 + 2
∂W

∂r
= − 2c

k2r
. (22)

We are looking for a similitude variable t (r, θ), where (r, θ) are two spherical coordinates.
In other words we take W = (t(r, θ)). It results in

′2(t)r(∇t)2 + 2′(t)r
∂t

∂r
= −2c

k2
. (23)

The similitude variable t (r, θ) exists if r(∇t)2 and r ∂t
∂r

are functions of t. In other words,
t (r, θ) must satisfy the system of equations

J (r(∇t)2, t)

J (r, θ)
= 0, (24)

J (r∂t/∂r, t)

J (r, θ)
= 0, (25)
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where J (f, g)/J (r, θ) is the Jacobian of functions f and g. By introducing the expressions
of the Jacobians in (24) and (25) one obtains

∂

∂r

[
r

(
∂t

∂r

)2

+
1

r

(
∂t

∂θ

)2
]

∂t

∂θ
− ∂

∂θ

[
r

(
∂t

∂r

)2

+
1

r

(
∂t

∂θ

)2
]

∂t

∂r
= 0 (26)

∂

∂r

(
r
∂t

∂r

)
∂t

∂θ
− ∂

∂θ

(
r
∂t

∂r

)
∂t

∂r
= 0. (27)

We are looking for a solution of the form

t = f (r)u(θ). (28)

From (27) the result is that the solution is

t = ru(θ), (29)

where u(θ) is an arbitrary function. By introducing t = ru(θ) in (26) the result is that u(θ)

satisfies the equation

u′

u
= (u2 + u′2)′

u2 + u′2 , (30)

whose solution is

u(θ) = 1 − cos θ. (31)

It results in

t = r(1 − cos θ). (32)

Equation (23) becomes

′2(t) + ′(t) +
c

k2t
= 0, (33)

with the solutions

(t) = 1

2

(
−t ±

∫ t
√

1 − 4c

k2u
du

)
. (34)

Let us consider the parabolic coordinates (ξ, ζ, φ), where ξ = r(1 − cos θ), ζ = r(1 + cos θ)

and φ is the azimuthal angle. We observe that t = ξ = r(1 − cos θ). In this way, the solutions
for the eikonal equation for the Coulomb potential is obtained

S± = k

[
r +

1

2

(
−ξ ±

∫ ξ
√

1 − 4c

k2u
du

)]
, (35)

or

S± = k

2

(
ζ ±

∫ ξ
√

1 − 4c

k2u
du

)
. (36)

Taking c = 0 in the above expression the solutions kz and kr are obtained. Let us solve the
transport equation

2∇A±∇S± + A±�S± = 0. (37)

By using (36) the equation for A+ in terms of parabolic coordinates is obtained,

2ξw(ξ)
∂A+

∂ξ
+ 2ζ

∂A+

∂ζ
+ [1 + ξw′(ξ) + w(ξ)]A+ = 0, (38)
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where

w(ξ) =
√

1 − 4c

k2ξ
. (39)

By introducing the variable w(ξ) instead of ξ in (38) the following equation for A+ is obtained,

(1 − w2)
∂A+

∂w
+ 2ζ

∂A+

∂ζ
+

(1 + w)2

2w
A+ = 0, (40)

whose solution is

A+ = 1 − w

2w1/2
. (41)

In the same way we find

A− = 1 + w

2w1/2
. (42)

In this way we have obtained the 3D WKB asymptotic approximations for two solutions

�in ∼ A− eiS− , (43)

�out ∼ A+ eiS+ . (44)

For c = 0 we have w = 1, so that A− = 1, A+ = 0, S− = kz, S+ = kr . It results in �in = eikz,
�out = 0. For c �= 0 the function �in is the Coulomb-distorted plane wavefunction and �out

is the Coulomb-distorted outgoing wavefunction.
Taking into account the WKB that is a doubly asymptotic approximation we may take the

asymptotics for r → ∞ of �in and �out. By calculating the integral in (36) and by introducing
the result in equations (43) and (44) one obtains

�in
∼

r→∞ ei(kz+η ln kξ), (45)

�out
∼

r→∞ − η

k(1 − cos θ)

ei(kr−η ln kξ)

r
. (46)

Note that from (46) the Rutherford scattering amplitude results up to a constant

ac ∼ K
η

2k sin2 θ/2
, θ �= 0. (47)

The constant K in the above equation cannot be determined in the WKB approximation. From
(39), (41) and (42) one can see that if ξ = 4η

k
or ξ = 0, then A± → ∞ and the 3D WKB

approximation breaks down. In other words, the 3D WKB approximation has caustics at
ξ = 0 and ξ = 4η

k
. The 3D WKB approximation of the Coulomb scattering wavefunction fails

at the caustics, because the amplitudes A± become infinite there. The caustic represented by
the surface of the paraboloid ξ = 4η

k
separates the classically forbidden region

(
0 < ξ <

4η

k

)
from the classically allowed region

(
ξ >

4η

k

)
. The caustic ξ = 0 is the Oz axis. The axial

caustic (Oz axis) is characteristic to the solution of scattering problems that do not depend
on the azimuthal angle [7, 13]. Although the 3D WKB approximation of the wavefunction is
singular at the caustics, the actual wavefunction is finite there.

In order to overcome the mentioned shortcoming of the 3D WKB approximation, a
uniform asymptotic approximation, valid near and away from the caustics, is necessary.
The uniform asymptotic approximation reduces to the 3D WKB approximation away from
the caustics and remains finite at the caustics. We are looking for a uniform asymptotic

8
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approximation for the 3D Coulomb scattering wavefunction based on the new Ansatz of the
form

� ∼ eiλω(�r)
{
g(�r)R0(ρ(�r)) − i

λ
h(�r)R′

0(ρ(�r))
}

, (48)

where R0 is the regular solution of the reduced radial equation for zero angular momentum

d2R0

dρ2
+ λ2

(
1 − 2η

ρ

)
R0 = 0. (49)

In order to determine the functions ω(�r), ρ(�r), g(�r) and h(�r) we need the solutions S± and
A± of the generalized eikonal and transport equations (18) and (19). Taking into account that
equations (18) and (19) for S± and A± are identical to equations (8) and (9) for S± and A±
it results in S± = S±, A± = A±. Consequently we determine ω(�r), ρ(�r), g(�r) and h(�r) by
using S± and A± given by equations (36), (41) and (42). By introducing the functions S± and
A± in equations (14)–(17) the functions ω = k

2ζ , ρ = k
2ξ , g = 1

2 and h = − 1
2 are obtained. In

this way, the uniform asymptotic approximation of the 3D Coulomb scattering wavefunction
is obtained up to a constant factor,

� ∼ 1

2
e

i
2 kζ

{
R0

(
1

2
kξ

)
+ iR′

0

(
1

2
kξ

)}
, (50)

where R0
(

1
2kξ

) = F0
(

1
2kξ

)
is the regular Coulomb wavefunction for zero angular momentum

[39], i.e. F0(ρ) is the regular solution of the differential equation

d2F0

dρ2
+

(
1 − 2η

ρ

)
F0 = 0. (51)

We have seen that one of the caustics is the convex surface of the paraboloid ξ = 4η/k

having Oz as the axis of symmetry and the focus in the origin. This caustic separates the
classically forbidden region

(
0 < ξ <

4η

k

)
from the classically allowed region

(
ξ >

4η

k

)
. The

classical trajectories of the charged particles scattered by the Coulomb potential are situated
in the last region and are tangent to the caustic surface [35, 36, 38].

We consider the uniform asymptotic approximation of the Coulomb scattering obtained
above:

� ∼ 1

2
eiω{F0(ρ) + iF′

0(ρ)}. (52)

We will show that through the WKB approximation of this function we will obtain a linear
combination of the 3D WKB approximations of the Coulomb-distorted plane wave and
Coulomb-distorted outgoing wavefunction obtained above. The 1D WKB approximation
of the Coulomb function and its derivative valid for ρ > 2η [39] is

F0(ρ) ∼ g−1/4 sin(φ + π/4), (53)

F ′
0(ρ) ∼ g1/4 cos(φ + π/4), (54)

where

φ =
∫ ρ

2η

√
1 − 2η

u
du, g = 1 − 2η

ρ
. (55)

By introducing (53) and (54) in (52) it results in

� ∼ i

4
eiω[(g1/4 − g−1/4) ei(φ+π/4) + (g1/4 + g−1/4) e−i(φ+π/4)]. (56)

By using ω = kζ/2 and ρ = kξ/2 one obtains

� ∼ i

4
(−A+eiS+ eiπ/4 + A−eiS−e−iπ/4). (57)

9
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The result is that by taking the WKB approximation of the uniform asymptotic approximation
for ξ >

4η

k
a linear combination of the 3D WKB approximations of the Coulomb-distorted

plane wave and Coulomb-distorted outgoing wave is obtained (see (43) and (44)), in other
words we see that away from caustic the uniform asymptotic approximation of the 3D Coulomb
scattering wavefunction passes into the 3D WKB approximation.

In order to have an incident Coulomb-distorted plane wave of unit amplitude, the uniform
asymptotic approximation (52) must be multiplied by a constant. In order to determine
this constant, we need the asymptotic approximation for large argument of the Coulomb
wavefunction F0 and of its derivative.

Wheeler [40] has applied the phase-amplitude method to Coulomb wavefunctions F0(ρ)

and G0(ρ), writing

F0(ρ) = A0(ρ) sin φ0(ρ), (58)

G0(ρ) = A0(ρ) cos φ0(ρ). (59)

The two terms asymptotic approximation for large ρ of A0 and φ0 is [40]

A0 = 1 +
η

2ρ
, (60)

φ0 = ρ − η ln 2ρ + σ0, (61)

where σ0 = arg�(1 + iη) (see also[39]).
The Wronskian of the approximations of F0 and G0 is unit, as it should be, since the

Wronskian of the exact solutions is unit. This is an important merit of these approximations
and taking the multiplicative constant in front of the uniform asymptotic approximation equal
to 2ieiσ0 we find

� ∼ ei(kz+η ln kξ) − η�(1 + iη)

k�(1 − iη)

ei(kr−η ln kξ)

ξ
. (62)

From this relation, the well-known Coulomb scattering amplitude can be deduced:

fc(θ) = − η

2k sin2 θ/2

�(1 + iη)

�(1 − iη)
e−iη ln sin2 θ/2, θ �= 0. (63)

In this way, the uniform asymptotic approximation obtained by using the new Ansatz is

� = eiσ0 e
i
2 kζ

[
F ′

(
1

2
kξ

)
− iF0

(
1

2
kξ

)]
, (64)

where ξ and ζ are the parabolic coordinates. This asymptotic approximation is valid on the
whole range of the variables, including the caustics ξ = 0 and ξ = 4η/k. In [30] a uniform
asymptotic approximation of the 3D Coulomb scattering wavefunction has been obtained by
using an Ansatz based on the Airy function. Although this approximation is valid at the
paraboloid caustic ξ = 4η/k, it breaks down at the caustic ξ = 0 (Oz axis).

The uniform asymptotic approximation (64) coincides with the Gordon solution of the
Coulomb scattering problem. Indeed, in [30] we expressed the Gordon solution in terms
of the Coulomb wavefunction F0 and its derivative by using some recurrence relations of
the Whittaker functions. In other words, the new Ansatz based on the regular reduced radial
wavefunction of zero orbital angular momentum provides a uniform asymptotic approximation
of the scattering wavefunction that in the case of the Coulomb potential is the exact solution.
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4. Conclusions

In this paper, a uniform asymptotic approximation, based on a new Ansatz, is obtained for
the scattering wavefunction in the case of an arbitrary central potential V (r). The new
Ansatz is introduced by using a function generated by the scattering problem, rather than
by using a standard special function. This function, generated by the problem itself, is the
regular reduced radial wavefunction of zero orbital angular momentum. By expressing the
3D uniform asymptotic approximation in terms of this function we are sure that the WKB
approximation of this uniform asymptotic approximation has the same structure of caustics as
the caustics of the studied 3D scattering problem. In other words, this ensures that the proper
Ansatz has been chosen, as discussed in appendix A. The uniform asymptotic approximation
of the scattering wavefunction for an arbitrary central potential led to an explicit expression
of the scattering amplitude, emphasizing the dependence on the potential parameters.

The method is applied to the scattering by a pure Coulomb potential. The 3D WKB
approximation of the Coulomb scattering wavefunction has two caustics: a paraboloid
ξ = 4η/k and the Oz axis (ξ = 0), where ξ = r(1 − cos θ) is a parabolic coordinate.
By using the new Ansatz based on the regular reduced radial wavefunction of zero orbital
angular momentum a uniform asymptotic approximation valid on the whole range of the
variables is obtained. It obviates the shortcoming of the uniform asymptotic approximation
based on the Airy function [30] that is valid on the caustic ξ = 4η/k, but is singular at the axial
caustic Oz. The uniform asymptotic approximation of the Coulomb wavefunction obtained in
this paper is in fact the Gordon solution of the Coulomb scattering problem expressed in terms
of the Coulomb wavefunction F0(ρ) and its derivative, as has been obtained in [30]. Being
valid on the whole range of the variables, the obtained uniform asymptotic approximation
allows us to get the scattering amplitude by using its asymptotics at r → ∞. By using the
Coulomb wavefunction F0(ρ) as a solution of the comparison equation the configuration of
the exceptional points (turning point and singular point), which are essential for the uniform
asymptotic approximation, has been preserved.

Appendix A

In the following, a short description of the method of the comparison equation is given. This
method is used in order to obtain the uniform asymptotic expansion for large parameter of
the solution of the ordinary second-order linear differential equation. Let us consider the
differential equation

d2y(x, λ)

dx2
+ λ2p(x, λ)y(x, λ) = 0. (A.1)

We are looking for a uniform asymptotic expansion of y(x, λ) for large λ. Let w(z, λ) be the
solution of the equation (the comparison equation)

d2w(z, λ)

dz2
+ λ2q(z, λ)w(z, λ) = 0. (A.2)

We consider the asymptotic expansion of y(x, λ) for large λ

y(x, λ) = A(x, λ)w(z, λ) +
1

λ
B(x, λ)

dw(z, λ)

dz
, (A.3)

where A(x, λ) and B(x, λ) are expanded in inverse powers of λ. The comparison
equation (A.2) is chosen so that it had the same configuration of turning points and singularities
as the initial equation (A.1). If there is a turning point of first order, the comparison equation

11
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is the Airy function equation. If there are two turning points of first order or one of second
order, then the comparison equation is the Weber differential equation. Lynn and Keller
[41] have extended the method of the comparison equation for equations having an arbitrary
finite number of turning points of any order. In [42–44], the authors have obtained uniform
asymptotic approximations of Coulomb wavefunctions FL(ρ) and GL(ρ) for large η by using
the comparison equation method. We restrict ourselves to L = 0. The Coulomb wavefunction
equation for L = 0 is

d2F0

dρ2
+

(
1 − 2η

ρ

)
F0 = 0. (A.4)

This differential equation has two exceptional points: ρ = 0 and ρ = 2η that are a regular
singular point and a turning point, respectively. The above-mentioned authors have obtained
two uniform asymptotic approximations of F0(ρ) and G0(ρ) using two comparison equations:
the Airy equation and the Bessel equation. The uniform approximation using Airy functions
is valid for ρ > 2η. The uniform asymptotic approximation using Bessel functions is valid
for ρ < 2η (for details see [42–44]). In order to obtain a uniform asymptotic approximation
valid on the whole interval ρ ∈ [0,∞), a comparison differential equation should be used
which has a turning point and a regular singular point. A uniform asymptotic approximation
for a second-order linear differential equation having a simple pole and a turning point was
obtained by Dunster [45]. The turning point and the singularity may become close. The
comparison equation used by Dunster was the Whittaker functions equation. In other words,
in the case of the Coulomb wavefunction equation the comparison equation that gives the
uniform asymptotic approximation on the whole interval [0,∞) is the Coulomb wavefunction
equation, i.e. the uniform asymptotic approximation is the Coulomb wavefunction itself.

Appendix B

We look for the asymptotic solution for large λ of the Schrödinger equation

�� + λ2(k2 − V (�r))� = 0. (B.1)

A new Ansatz is used, namely we take as the special function which occurs in the uniform
approximation of the solution �(�r) the regular reduced radial wavefunction of zero orbital
angular momentum R0(r). In other words, we take the form

�(�r) = eiλω(�r)
{
g(�r)R0(ρ(�r)) − i

λ
h(�r)R′

0(ρ(�r))
}

. (B.2)

Here, R0 is the regular solution of the second-order ordinary differential equation

d2R0

dρ2
+ λ2P(ρ)R0 = 0, (B.3)

where

P(ρ) = 1 − 1

k2
V (ρ/k). (B.4)

In order to obtain the uniform asymptotic approximation, the functions ω(�r), ρ(�r), g(�r) and
h(�r) have to be determined. By substituting (B.2) into the Schrödinger equation (B.1) and by
using (B.3) R′′

0 (ρ) is eliminated. Then the coefficients that multiply R0(ρ) and R′
0(ρ) in the

Schrödinger equation are separately equated to zero. In this way two equations are obtained.
By collecting in these equations the coefficients with the same power of λ the following system
of equations for ω(�r), ρ(�r), g(�r) and h(�r) one obtains

(∇ω)2 + P(ρ)(∇ρ)2 = k2 − V (r), (B.5)

12
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∇ω∇ρ = 0, (B.6)

2∇ω∇g + �ρPh + 2∇ρ∇hP + g�ω + (∇ρ)2P ′h = 0, (B.7)

2∇g∇ρ + h�ω + g�ρ + 2∇ω∇h = 0. (B.8)

In order to obtain the functions ρ(�r) and ω(�r), the new functions S±(�r) defined as

S±(�r) = ω(�r) ±
∫ ρ(�r)

P 1/2(t)dt (B.9)

are introduced. By adding equation (B.5) to equation (B.6) multiplied by 2P 1/2(ρ) one obtains

(∇ω + P 1/2∇ρ)2 = k2 − V (r). (B.10)

Similarly, by subtracting from (B.5) equation (B.6) multiplied by 2P 1/2(ρ) one obtains

(∇ω − P 1/2∇ρ)2 = k2 − V (r). (B.11)

Taking into account the definition (B.9) of S± this results in that equations (B.10) and (B.11)
can be written as

(∇S±)2 = k2 − V (r), (B.12)

which represents the generalized eikonal equation.
In order to obtain the functions g(�r) and h(�r), the new functions A±(�r) defined as

A±(�r) = P −1/4(ρ)[g(�r) ± P 1/2(ρ)h(�r)] (B.13)

are introduced. By adding equation (B.8) multiplied by P 1/4 to equation (B.7) multiplied by
P −1/4 and taking into account the definitions of S+ and A+ one obtains

2∇S+∇A+ + A+�S+ = 0. (B.14)

Similarly by subtracting equation (B.8) multiplied by P 1/4 from equation (B.7) multiplied by
P −1/4 and taking into account the definitions of S− and A− one obtains

2∇S−∇A− + A−�S− = 0. (B.15)

Equations (B.14) and (B.15) represent the generalized transport equation.
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[44] Erdélyi A and Swanson C A 1957 Mem. Am. Math. Soc. 25 1
[45] Dunster T M 1994 SIAM J. Appl. Math. 25 322

14

http://dx.doi.org/10.1063/1.1664835
http://dx.doi.org/10.1098/rsta.1970.0076
http://dx.doi.org/10.1016/0022-247X(70)90190-3
http://dx.doi.org/10.1137/0128069
http://dx.doi.org/10.1137/1017003
http://dx.doi.org/10.1137/0125055
http://dx.doi.org/10.1137/1012077
http://dx.doi.org/10.1137/0143045
http://dx.doi.org/10.1209/epl/i2002-00223-5
http://dx.doi.org/10.1080/03605308708820492
http://dx.doi.org/10.1088/0305-4470/20/6/025
http://dx.doi.org/10.1007/BF01351302
http://dx.doi.org/10.1119/1.14019
http://dx.doi.org/10.1103/PhysRev.52.1123
http://dx.doi.org/10.1002/cpa.3160230310
http://dx.doi.org/10.1137/S0036141092229537

	1. Introduction
	2. Uniform asymptotic approximation of the 3D scattering wavefunction for a central potential. New Ansatz
	3. Uniform asymptotic approximation for the 3D Coulomb scattering wavefunction based on a new Ansatz
	4. Conclusions
	Appendix A
	Appendix B
	References

